FORTY-SEVENTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 6, 1986

Examination A

A-1. Find, with explanation, the maximum value of $f(x) = x^3 - 3x$ on the set of all real numbers x satisfying $x^4 + 36 \le 13x^2$.

A-2. What is the units (i.e., rightmost) digit of $\left[\frac{10^{20000}}{10^{100}+3}\right]$? Here [x] is the greatest integer $\leq x$.

A-3. Evaluate $\sum_{n=0}^{\infty} \operatorname{Arccot}(n^2 + n + 1)$, where Arccot t for $t \geq 0$ denotes the number θ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$.

A-4. A transversal of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let f(n) be the number of $n \times n$ matrices A satisfying the following two conditions:

- (a) Each entry $\alpha_{i,j}$ of A is in the set $\{-1,0,1\}$.
- (b) The sum of the n entries of a transversal is the same for all transversals of A. An example of such a matrix A is

$$A = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Determine with proof a formula for f(n) of the form

$$f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,$$

where the a_i 's and b_i 's are rational numbers.

A-5. Suppose $f_1(x), f_2(x), \ldots, f_n(x)$ are functions of n real variables $x = (x_1, \ldots, x_n)$ with continuous second-order partial derivatives everywhere on \mathbb{R}^n . Suppose further that there are constants c_{ij} such that

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} = c_{ij}$$

for all i and j, $1 \le i \le n$, $1 \le j \le n$. Prove that there is a function g(x) on \mathbb{R}^n such that $f_i + \partial g/\partial x_i$ is linear for all i, $1 \le i \le n$. (A linear function is one of the form

$$a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n.$$

A-6. Let a_1, a_2, \ldots, a_n be real numbers, and let b_1, b_2, \ldots, b_n be distinct positive integers. Suppose there is a polynomial f(x) satisfying the identity

$$(1-x)^n f(x) = 1 + \sum_{i=1}^n a_i x^{b_i}.$$

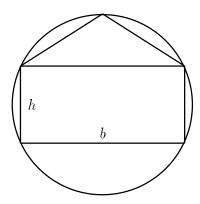
Find a simple expression (not involving any sums) for f(1) in terms of b_1, b_2, \ldots, b_n and n (but independent of a_1, a_2, \ldots, a_n).

FORTY-SEVENTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 6, 1986

Examination B

B-1. Inscribe a rectangle of base b and height h and an isosceles triangle of base b in a circle of radius one as shown. For what value of h do the rectangle and triangle have the same area?



B-2. Prove that there are only a finite number of possibilities for the ordered triple T = (x - y, y - z, z - x) where x, y, and z are complex numbers satisfying the simultaneous equations

$$x(x-1) + 2yz = y(y-1) + 2zx = z(z-1) + 2xy,$$

and list all such triples T.

B-3. Let Γ consist of all polynomials in x with integer coefficients. For f and g in Γ and m a positive integer, let $f \equiv g \pmod{m}$ mean that every coefficient of f-g is an integral multiple of m. Let n and p be positive integers with p prime. Given that f, g, h, r, and s are in Γ with $rf + sg \equiv 1 \pmod{p}$ and $fg \equiv h \pmod{p}$, prove that there exist F and G in Γ with $F \equiv f \pmod{p}$, $G \equiv g \pmod{p}$, and $FG \equiv h \pmod{p^n}$.

B-4. For a positive real number r, let G(r) be the minimum value of $|r - \sqrt{m^2 + 2n^2}|$ for all integers m and n. Prove or disprove the assertion that $\lim_{r\to\infty} G(r)$ exists and equals 0.

B-5. Let $f(x,y,z) = x^2 + y^2 + z^2 + xyz$. Let p(x,y,z), q(x,y,z), r(x,y,z) be polynomials with real coefficients satisfying

$$f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).$$

Prove or disprove the assertion that the sequence p, q, r consists of some permutation of $\pm x, \pm y, \pm z$, where the number of minus signs is 0 or 2.

B-6. Suppose A, B, C, D are $n \times n$ matrices with entries in a field F, satisfying the conditions that AB^t and CD^t are symmetric and $AD^t - BC^t = I$. Here I is the $n \times n$ identity matrix, and if M is an $n \times n$ matrix, M^t is the transpose of M. Prove that $A^tD - C^tB = I$.